Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Concept bottleneck models (CBM) aim to improve model interpretability by predicting human level “concepts” in a bottleneck within a deep learning model architecture. However, how the predicted concepts are used in predicting the target still either remains black-box or is simplified to maintain interpretability at the cost of prediction performance. We propose to use Fast Interpretable Greedy Sum- Trees (FIGS) to obtain Binary Distillation (BD). This new method, called FIGSBD, distills a binary-augmented concept-to-target portion of the CBM into an interpretable tree-based model, while maintaining the competitive prediction performance of the CBM teacher. FIGS-BD can be used in downstream tasks to explain and decompose CBM predictions into interpretable binary-concept-interaction attributions and guide adaptive test-time intervention. Across 4 datasets, we demonstrate that our adaptive test-time intervention identifies key concepts that significantly improve performance for realistic human-in-the-loop settings that only allow for limited concept interventions. All code is made available on Github (https://github.com/mattyshen/adaptiveTTI).more » « lessFree, publicly-accessible full text available March 5, 2026
-
Automated mechanistic interpretation research has attracted great interest due to its potential to scale explanations of neural network internals to large models. Existing automated circuit discovery work relies on activation patching or its ap- proximations to identify subgraphs in models for specific tasks (circuits). They often suffer from slow runtime, approximation errors, and specific requirements of metrics, such as non-zero gradients. In this work, we introduce contextual decomposition for transformers (CD-T) to build interpretable circuits in large lan- guage models. CD-T can produce circuits at any level of abstraction and is the first to efficiently produce circuits as fine-grained as attention heads at specific sequence positions. CD-T is compatible to all transformer types, and requires no training or manually-crafted examples. CD-T consists of a set of mathematical equations to isolate contribution of model features. Through recursively comput- ing contribution of all nodes in a computational graph of a model using CD-T followed by pruning, we are able to reduce circuit discovery runtime from hours to seconds compared to state-of-the-art baselines. On three standard circuit eval- uation datasets (indirect object identification, greater-than comparisons, and doc- string completion), we demonstrate that CD-T outperforms ACDC and EAP by better recovering the manual circuits with an average of 97% ROC AUC under low runtimes. In addition, we provide evidence that faithfulness of CD-T circuits is not due to random chance by showing our circuits are 80% more faithful than random circuits of up to 60% of the original model size. Finally, we show CD-T circuits are able to perfectly replicate original models’ behavior (faithfulness = 1) using fewer nodes than the baselines for all tasks. Our results underscore the great promise of CD-T for efficient automated mechanistic interpretability, paving the way for new insights into the workings of large language models. All code for using CD-T and reproducing results is made available on Github (https://github.com/adelaidehsu/CD_Circuit).more » « lessFree, publicly-accessible full text available January 22, 2026
-
LLMs have demonstrated impressive proficiency in generating coherent and high-quality text, making them valuable across a range of text- generation tasks. However, rigorous evaluation of this generated content is crucial, as ensuring its quality remains a significant challenge due to persistent issues such as factual inaccuracies and hallucination. This paper introduces three fine-tuned general-purpose LLM auto-evaluators, REC-8B, REC-12B and REC-70B, specifically designed to evaluate generated text across sev- eral dimensions: faithfulness, instruction follow- ing, coherence, and completeness. These mod- els not only provide ratings for these metrics but also offer detailed explanation and verifiable citation, thereby enhancing trust in the content. Moreover, the models support various citation modes, accommodating different requirements for latency and granularity. Extensive evalua- tions on diverse benchmarks demonstrate that our general-purpose LLM auto-evaluator, REC-70B, outperforms state-of-the-art LLMs, excelling in content evaluation by delivering better quality ex- planation and citation with minimal bias. Our REC dataset and models are available at https: //github.com/adelaidehsu/REC.more » « less
An official website of the United States government

Full Text Available